INPUT COMPLEXITY & RULE INDUCTION

An Entropy Model

Silvia Rădulescu, Frank Wijnen, Sergey Avrutin Utrecht University (The Netherlands)

Rule Induction

A Puzzling Mechanism

Puzzle

Types of Rule Induction

Perceptually-bound generalizations

- → relations between perceptual features of items
 - e.g. a relation based on physical identity: ba_ba (ba follows ba) OR "end in di"

Category-based generalizations

- → operations over abstract variables (X follows X, where X is a variable)
 - e.g. an identity relation over variables X_X, "end in Y"
 - Based on Gómez and Gerken (2000)

Previous research. Artificial Grammar Learning

Underlying mechanisms

- (1) **statistical learning** → transitional probabilities
- phonotactic regularities (Chambers et al, 2003),
- word boundaries (Saffran et al, 1996)
- → blind to novel items

- (2) abstract rule learning
- → algebraic rules that apply to categories (Marcus et al, 1999)
- first item is the same as third item (li_na_li; ga_ti_ga, etc.)
- → How do we tune into such rules? Any input factors?

Factors

(1) input variability → rule reliability → if input allows for several generalizations, most statistically consistent (reliable) one is formed (Gerken, 2006)

VS.

→ What makes a rule reliable? How much variability?

- (2) richness of contexts, (3) overlap of contexts, (4) systematic gaps, (5) exposure time → factors modulate category formation in a different manner (Reeder et al, 2009)
- → Are these independent factors? Why different effects?

Independent mechanisms underlying these types of generalization?

1

2.

- Statistical learning -> Perceptually-bound generalizations
 - ba follows ba, end in di
- Abstract rule learning -> Category-based generalizations
 - varX follows varX, end in varY

OR Phased mechanism?

Research Questions

• 1. What are the independent factors that trigger the inductive leap from memorizing specific items to forming perceptuallybound and category-based generalizations?

2. Are there independent mechanisms underlying these two types of generalization

OR

Are they different outcomes of the same learning mechanism?

New Entropy Model

Perceptually-bound generalizations

Category-based generalizations

Predictions

Rule Induction → a cognitive mechanism that results from the interaction of *input complexity* (entropy) and the processing limitations of the human brain (a limited *channel capacity*).

Less complexity (entropy) → perceptually-bound generalizations

High complexity (entropy) → category-based generalizations

Perceptually-bound generalization and category-based generalization are outcomes of the same learning mechanism → create structure (rules) in response to the degree of entropy in the input to prevent *channel* overloading

Effect of Input Complexity on Rule Induction Experiments

- Experiment 1 35 adults, ~22y, ~4min, bet-subj
- 3-syllable XXY: goo_goo_sjie
- manipulated number & frequency
 - \rightarrow LowEN 3.5 bits (4 × 6Xs / 4 × 6Ys)
 - MedEN 4 bits (2 × 12Xs / 2 × 12Ys)
 - \rightarrow **HiEN** 4.58 bits (1 × 24Xs / 1 × 24Ys)
- Experiment 2 36 adults, ~22y, ~4min, betsubj
- 3-syllable XXY: daa daa lie
- manipulated number & frequency
 - LowEN 2.8 bits (4 × 7Xs / 4 × 7Ys)
 - MedEN 4.25 bits (2 × 14Xs / 2 × 14Ys)
 - HiEN 4.8 bits (1 × 28Xs / 1 × 28Ys)

Test ("Could this string be possible in the language that you heard?" YES / NO) – 20 strings

- → XXY_new_syll: too_too_suu√
- → XXY_trained_syll: goo_goo_sjie √
- → X1X2Y_trained_syll: teu_duu_saa*
- → X1X2Y_new_syll: reu_loo_gee*

Results

- → the higher the entropy, the higher the tendency to accept **new XXY** strings
- → at all tested levels of entropy, there is a very similar high acceptance of XXY strings with trained syllables
- → X1X2Y_trained syllables
- U-shape pattern of correct rejection

Information load regarding the structure (rules)

What is information?

→ a quantitative measure of how uncertain we are about the structure when exposed to a certain input entropy

The uncertainty about structure decreases logarithmically, as the input entropy increases.

Information load for the six values of acceptance of new XXY strings

Conclusions

→ the tendency to abstract away from the memorized input increases as the input complexity (entropy) increases

→ perceptually-bound generalization and categorybased generalization are outcomes of the same learning mechanism → create rules in response to the degree of entropy in the input to prevent channel overloading

Further research

- → test the effect of input complexity with infants and compare with adults (fNIRS)
- → test the effect of channel capacity on rule induction
- → what are the cognitive processes that modulate channel capacity (short-term memory and pattern recognition tests)

