INPUT COMPLEXITY AND RULE INDUCTION

An Entropy Model

Silvia Rădulescu, Frank Wijnen, Sergey Avrutin (Utrecht University)

Rule Induction

A Puzzling Mechanism

Previous research. Artificial Grammar

- (1) **statistical learning** → transitional probabilities e.g. phonotactic regularities (Chambers et al, 2003), word boundaries (Saffran et al, 1996)
- → blind to novel items
- (2) algebra-like system → algebraic rules that apply to categories (Marcus et al, 1999)
 e.g. first item is the same as third item (li_na_li)
 → How do we tune into such rules? Any input factors?
- (3) rule reliability → if input allows for different rules, most statistically consistent (reliable) rule inferred (Gerken, 2006)
- → What makes a rule reliable?
- (4) Richness of contexts, overlap of contexts, systematic gaps, exposure time → factors modulate category formation (Reeder et al, 2009)
- → Are these independent factors? Why different effects?

Types of Abstractions

Perceptually-bound rules →

relations between perceptual features of items e.g. a relation based on physical identity: ba_ba (ba follows ba)

Category-based abstractions

→ operations over abstract variables (X follows X, where X is a variable)

e.g. Noun_Verb_Noun - an identity relation over the abstract linguistic category of noun

Based on Gómez and Gerken (2000)

Independent mechanisms?

Perceptually-bound rules

• ba follows ko, ends in di

Category-based abstractions

 varY follows varX, varY follows 2 varX

OR
Phased mechanism?

Research Questions

 1. What triggers and what limits the inductive leap from memorizing specific items and extracting perceptuallybound rules to making category-based abstractions?

2. Are they independent mechanisms

OR

different outcomes of the same learning system?

New Entropy Model

Perceptually-bound abstractions Category-based abstractions Entropy leledi → a function of <u>numbe</u>r kokod dedej kokoba of items and their probability (frequency) (Shannon, 1948) leledi → a measure of input complexity le le di √ ends in di √ XXYX XXY Input Channel **Channel** Input complexity capacity capacity complexity entropy/time entropy entropy/time entropy

Predictions

Rule Induction → a cognitive mechanism that results from the interaction of input complexity (entropy) and the processing limitations of the human brain (a limited channel capacity).

Less complexity (entropy) → perceptually-bound rules

High complexity (entropy) → category-based abstractions

Perceptually-bound learning and category-based abstraction are outcomes of the same learning mechanism → create structure (rules) in response to the degree of entropy in the input.

Effect of Input Complexity on Rule Induction Experiments

- Experiment 1 35 adults, ~22y, ~4min, bet-subj
- 3-syllable XXY: goo_goo_sjie
- manipulated number & frequency
 - LowEN 3.5 bits (4 × 6Xs / 4 × 6Ys)
 - MedEN 4 bits (2 × 12Xs / 2 × 12Ys)
 - \rightarrow **HiEN -** 4.58 bits (1 × 24Xs / 1 × 24Ys)
- Experiment 2 36 adults, ~22y, ~4min, betsubj
- 3-syllable XXY: daa_daa_lie
- manipulated number & frequency
 - LowEN 2.8 bits (4 × 7Xs / 4 × 7Ys)
 - MedEN 4.25 bits (2 × 14Xs / 2 × 14Ys)
 - HiEN 4.8 bits (1 × 28Xs / 1 × 28Ys)

Test ("Could this string be possible in the language that you heard?" YES / NO) – 20 strings

- → XXY_new_syll: too_too_suu V
- → XXY_trained_syll: goo_goo_sjie V
- → X1X2Y_trained_syll: teu_duu_saa*
- → X1X2Y_new_syll: reu_loo_gee *

Results

- → the higher the entropy, the higher the tendency to accept new XXY strings
- → at all tested levels of entropy, there is a very similar high acceptance of XXY strings with trained syllables
- → X1X2Y_trained syllables
- U-shape pattern of correct rejection

Information load regarding the structure in the input

What is information?

→ a quatitative measure of how uncertain the brain is about the structure when exposed to a certain input entropy

The uncertainty about structure decreases as the input entropy increases.

Conclusions

- → the tendency to abstract away from the memorized input increases as the input complexity (entropy) increases
- → perceptually-bound learning and category-based abstractions are outcomes of the same learning mechanism → create structure (rules) in response to the degree of entropy in the input

Further research

- → test the effect of input complexity with infants (run similar experiments with 10-month-olds)
- → what are the cognitive processes/capacities that modulate channel capacity
- → test the effect of channel capacity on rule induction (manipulate memory capacity and a domain-general capacity to extract patterns)