

Universiteit Utrecht

Limits and Variations of Linguistic Generalizations **An Artificial Grammar Study with Adults** Silvia RĂDULESCU, Frank WIJNEN, Sergey AVRUTIN **Utrecht University, Utrecht Institute of Linguistics (UiL-OTS)**

contact: sil.radulescu@gmail.com

From Little Evidence to General Rules

... in child language acquisition

New Entropy Model

> Memory

Channel capacity

Processing capacity/

 \frown Less complexity \rightarrow perceptually-bound learning (ba follows ba)

Previous research and accounts

(1) statistical learning \rightarrow transitional probabilities e.g. phonotactic regularities (Chambers et al, 2003), word boundaries (Saffran et al, 1996)

blind to novel items

<u>algebra-like system</u> \rightarrow algebraic rules that (2)apply to categories (Marcus et al, 1999) e.g. first item is the same as third item (*li_na_li*)

Input complexity >

> entropy

Experiment

- 35 participants (age 19-26)
- 3-syllable XXY strings (each letter) represents a set of syllables)
- \succ three conditions (72 strings each, ~ 4 min)

Training

Higher complexity \rightarrow category-based abstractions (Noun-Verb-Noun)

Entropy \rightarrow a function of the <u>number</u> of different items in the input and their probability of occurrence (frequency) \rightarrow a measure of input complexity (bits)

> $H(X) = -\sum_{i=1}^{n} p(x_i) logp(x_i)$ (Shannon, 1948)

Test ("Could this string be possible in the language that you heard?") – 20 strings

> XXY_trained_syllables: goo_goo_sjie V > XYZ_new_syllables: reu_loo_gee * > XXY_new_syllables: too_too_suu V teu duu saa * > XYZ_trained_syllables:

but what enables tuning into such rules and what input factors (if any) facilitate or impede this process?

(XYZ: strings of three different syllables)

Results – Generalized Linear Mixed Model: Test String Type x Entropy Group interaction - F(9, 679) = 6.428, p = .000)

XYZ with trained syllables

Generalization to novel XXY strings \succ the tendency to abstract away from the memorized input increases as the input *complexity* increases

Difference: XXY_trained_syll vs. XXY_new_syll Δ [HiEn] < Δ [MedEn] < Δ [LowEn] Iearners in the HiEn condition had the highest

XYZ with trained syllables

perceptually-& category-based generalization work against each other: memory trace of individual

tendency to fully generalize to novel XXY strings

syllables (but not their sequence) prevents rejection

Discussion

A possible model for the interplay between the perceptually-bound and category-based abstractions

Does this model apply to other cognitive processes?

LEARNING MECHANISMS

Conclusion

The human brain seems to be sensitive to the amount of information in the environment. A complex linguistic environment triggers the inductive leap from memorizing specific items to extracting generalized rules.

References

Chambers, K., Onishi, K., & Fisher, C. (2003). Infants learn phonotactic regularities from brief auditory experience. *Cognition*, *87*, B69-B77.

Gómez, R.L. & Gerken, L.A. (2000). Infant artificial language learning and language acquisition. *Trends in Cognitive Sciences* 4, 178–186

Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. *Science*, 283, 77–80. Saffran, J.R., Aslin, R.N., & Newport, E.L. (1996). Statistical Learning by 8-Month-Old Infants. *Science 274* (5294), 1926–1928. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.