

Universiteit Utrecht

Limits and Variations of Linguistic Generalizations An Artificial Grammar Study with Adults Silvia RĂDULESCU, Frank WIJNEN, Sergey AVRUTIN Utrecht University, Utrecht Institute of Linguistics (UiL-OTS)

contact: sil.radulescu@gmail.com

From Little Evidence to General Rules

…in child language acquisition

New Entropy Model

References

Chambers, K., Onishi, K., & Fisher, C. (2003). Infants learn phonotactic regularities from brief auditory experience. *Cognition, 87*, B69-B77.

Gómez, R.L. & Gerken, L.A. (2000). Infant artificial language learning and language acquisition. *Trends in Cognitive Sciences 4*, 178–186

(1) statistical learning \rightarrow transitional probabilities e.g. phonotactic regularities (Chambers et al, 2003), word boundaries (Saffran et al, 1996)

 \triangleright blind to novel items

(2) algebra-like system \rightarrow algebraic rules that apply to categories (Marcus et al, 1999) e.g. first item is the same as third item *(li_na_li)*

> Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. *Science, 283*, 77–80. Saffran, J.R., Aslin, R.N., & Newport, E.L. (1996). Statistical Learning by 8-Month-Old Infants. *Science 274* (5294), 1926–1928. Shannon, C. E. (1948). *A mathematical theory of communication*. Bell System Technical Journal, 27, 379–423.

 \triangleright but what enables tuning into such rules and what input factors (if any) facilitate or impede this process?

 $3 \times / 24$ ……… $/24$ 6 x 12 ……… 12 12×6 ……… 6 High Entropy ($H = 4.58$ bits) Medium Entropy ($H = 4$ bits) Low Entropy ($H = 3.5$ bits)

- 35 participants (age 19-26)
- 3-syllable XXY strings (each letter represents a set of syllables)
- \triangleright three conditions (72 strings each, \sim 4 min)

 $H(X) = -\sum_{i=1}^{n} p(x_i) log p(x_i)$ (Shannon, 1948)

Results – Generalized Linear Mixed Model: Test String Type x Entropy Group interaction - F(9, 679) = 6.428, *p = .000*)

Difference: XXY_trained_syll vs. XXY_new_syll Δ[HiEn] < Δ[MedEn] < Δ[LowEn] \triangleright learners in the HiEn condition had the highest

Previous research and accounts

Test ("Could this string be possible in the language that you heard?") – 20 strings

 XXY_trained_syllables: goo_goo_sjie √ XYZ_new_syllables: reu_loo_gee * XXY_new_syllables: too_too_suu √ XYZ trained syllables: teu duu saa *

Experiment

Generalization to novel XXY strings \triangleright the tendency to abstract away from the memorized input increases as the *input complexity* increases

tendency to fully generalize to novel XXY strings

XYZ with trained syllables

 perceptually-& category-based generalization work against each other: memory trace of individual

syllables (but not their sequence) prevents rejection

(XYZ: strings of three different syllables)

Discussion

A possible model for the interplay between the perceptually-bound and category-based abstractions

Does this model apply to other cognitive processes?

Conclusion

The human brain seems to be sensitive to the amount of information in the environment. A complex linguistic environment triggers the inductive leap from memorizing specific items to extracting generalized rules.

Less complexity → **perceptually-bound learning** (*ba* follows *ba*)

> **Higher complexity** → **category-based abstractions** (Noun-Verb-Noun)

Entropy \rightarrow a function of the number of different items in the input and their probability of occurrence (frequency) \rightarrow a measure of input complexity (bits)

Input complexity

 \triangleright entropy

>

Channel capacity

 \triangleright Processing capacity

≻ Memory

Training

XYZ with trained syllables

LEARNING MECHANISMS