Cognitive Constraints on Rule Induction

An Entropy Model

NWO Netherlands Organisation for Scientific Research

Silvia Rădulescu & Efi Giannopoulou Sergey Avrutin, Frank Wijnen Utrecht University How do we make generalizations from little evidence?

Types of Rule Induction (generalization)

Item-bound generalizations

- \rightarrow relations between specific items
 - e.g. verb + "-ed"

Category-based generalizations

- → operations beyond specific items
- \rightarrow over abstract categories
 - e.g. NOUN + VERB + ADVERB

Independent underlying mechanisms ?

- Statistical learning -> Item-bound generalizations
- ba follows ba, end in di

2.

OR

• Saffran et al. (1996); Aslin et al. (1998)

- Abstract rule learning -> Category-based generalizations
 - varX follows varX, end in varY

• Marcus et al. (1999)

• Statistical learning -> BOTH item-bound & category-based generalizations

• Aslin & Newport (2012)

OR Phased mechanism?

Entropy Model

Rule Induction → the interaction between *input complexity* (entropy) and the limited encoding power of the human brain (*channel capacity*)

Low complexity (entropy) → item-bound generalizations High complexity (entropy) → category-based generalizations

What is the effect of Input Complexity on Rule Induction?

vary Input Complexity & keep Channel Capacity constant

Artificial Grammar Learning - Experiment 1 + 2

- 71 adults, ~22y, ~4min, between-subjects
- 3-syllable XXY: goo_goo_sjie
- manipulated ENTROPY (number & frequency) > LowEN

2.8 bits (4 × 7Xs / 4 × 7Ys)
3.5 bits (4 × 6Xs / 4 × 6Ys)

> MedEN

> 4 bits (2 × 12Xs / 2 × 12Ys)

> 4.25 bits (2 × 14Xs / 2 × 14Ys)

> Hien

> 4.58 bits (1 × 24Xs / 1 × 24Ys)
> 4.8 bits (1 × 28Xs / 1 × 28Ys)

Test

Could this string be possible in the language that you heard?

- 5 x 4 types = 20 strings
 - XXY_new_syll: too_too_suu V
 - XXY_trained_syll: goo_goo_sjie V
 - **XYZ_trained_syll:** teu_duu_saa*
 - XYZ_new_syll: reu_loo_gee *

Results

the higher the entropy, the higher the tendency to accept new XXY strings

a very similar high acceptance of **XXY trained** strings

Uncertainty about the structure in the input

What is information here?

→ a quantitative measure of how uncertain the mind is about the structure when exposed to a certain input entropy

The uncertainty about structure decreases as the input entropy increases.

Entropy Model

Rule Induction → interaction of *input complexity* (entropy) and *channel capacity*

Low complexity (entropy) → item-bound generalizations

High complexity (entropy) → category-based generalizations

Entropy Model - hypotheses

Rule Induction → interaction of *input complexity* (entropy) and *channel capacity*

channel capacity

Entropy Model - hypotheses

Rule Induction → interaction of *input complexity* (entropy) and *channel capacity*

Channel Capacity

- information-theoretic concept (entropy/time)
- model the limited encoding power of the brain

What are the cognitive processes that modulate channel capacity?

- memory capacity
- pattern-recognition capacity
- attention ?

Raven's Standard Progressive matrices

Incidental memory task

Goal

measure participants' capacity to memorize incidentally, without having an explicit instruction to do so

Training phase

listen to 30 pseudo-words following a Dutch syllable pattern

- e.g. go_pem, wa_dim
- from a forgotten language
- What does this word sound like?

Incidental memory task

Raven's Standard Progressive Matrices

Visual pattern-recognition test

- 60 questions logically complete patterns of shapes
- Increasing difficulty

Raven's Standard Progressive Matrices

Visual pattern-recognition test

- 60 questions logically complete patterns of shapes
- Increasing difficulty

Raven's Standard Progressive Matrices

Visual pattern-recognition test

- 60 questions logically complete patterns of shapes
- Increasing difficulty

Results: XXY new

Incidental Memorization (d')

Pattern Recognition and Rule Induction

Raven's Matrices Percentiles

Lower incidental memory Higher visual pattern-recognition

predict higher tendency to generalize

Results: new XXY

People with lower memory capacity AND higher visual patternrecognition capacity have the highest tendency to generalize

Conclusions

 \rightarrow if input entropy increases, the tendency to generalize increases gradually

 \rightarrow lower incidental memory predicts a higher tendency to generalize

→ higher visual pattern recognition predicts a higher tendency to generalize

→ the two types of rule induction are outcomes of the same information encoding mechanism → gradually move from lower-level item-bound encoding to higher-level category-based encoding in response to the interaction between input entropy and the encoding power (channel capacity)

"To think is to forget a difference, to generalize, to abstract. In the overly replete world of Funes there were nothing but details, almost contiguous details." **Funes, The Memorious** Jorge Luis Borges

Netherlands Organisation for Scientific Research

UIL OTS UTRECHT INSTITUTE OF LINGUISTICS